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RADIAL DENSITY AND TEMPERATURE PROFILES AT THE I O N  

CYCLOTRON WAVE RESONANCE POINT 

by Roman Krawec* 

L e w i s  Research Center 

National Aeronautics and Space Administration 

Cleveland, Ohio 

ABSTRACT 

A simplif ied theory f o r  an  e l e c t r o s t a t i c  probe i n  a magnetically con- 

f ined plasma i s  presented. 

a r e  compared with those ca lcu la ted  from Langmuir probe theory. The model 

presented provides an expression f o r  ca lcu la t ing  ion temperature from the  

probe data. Radial p r o f i l e s  of e lectron densi ty ,  radial  e l e c t r i c  f i e l d ,  

e l ec t ron  temperature, and ion temperature a r e  presented f o r  two experiments: 

(1) a d .c .  hot-cathode low-pressure (2p) discharge confined by a s teady mag- 

n e t i c  f i e l d ;  and ( 2 )  a plasma heat ing experiment where ion  cyclotron waves 

propagate along the  plasma column. The radial e lec t ron  dens i ty  p r o f i l e s  

show t h a t  t he  maximum dens i ty  does not occur on a x i s  but a t  r a d i i  of 0.5 t o  

1 .0  cm ( the  plasma rad ius  w a s  approximately 2 . 5  em) The average dens i t i e s  

a r e  found t o  be i n  agreement with microwave interferometer measurements and 

cons is ten t  with the  loca t ion  of maximum power t r ans fe r .  The ion  and e lec t ron  

temperatures a r e  found t o  reach a maximum near the  plasma boundary. 

d i t i o n  of rf power is found t o  heat both t h e  ions and e lec t rons  hut has 

l i t t l e  e f f e c t  on the  dens i ty .  

In te rpre ta t ion  of probe r e s u l t s  using the  model 
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. INTRODUCTION 

Experiments attempting t o  r e l a t e  the amount of rf power absorbed by a 

magnetically confined plasma t o  plasma density, plasma radius,  c o i l  wave- 

length,  and magnetic f i e l d  have been carr ied out at  t h e  L e w i s  Research Center 

and a t  other labora tor ies  (a review of these experiments is  given i n  R e f .  1). 

According t o  the  theory of Stix (Ref. 2 ) ,  t h e  value of t h e  magnetic f i e l d  a t  

which maximum power absorption occurs is  pr imari ly  a funct ion of ion dens i ty  

when the  rad io  frequency i s  near the  ion cyclotron frequency. The amount of 

power t r a n s f e r ,  however, i s  s t rongly dependent on the plasma diameter. I n  

Ref. 2 a c y l i n d r i c a l  plasma of uniform densi ty  and ion temperature was as- 

sumed. 

temperature d i s t r i b u t i o n  of the  plasma w i l l  a f f e c t  both t h e  shape and t h e  

magnitude of the  resonant peak. 

of these radial p r o f i l e s  i s  needed i n  order t h a t  any experiment can properly 

be compared with theory. 

It has r e c e n t l y  been shown (Ref. 3) t h a t  the  r a d i a l  densi ty  and ion 

It thus becomes apparent t h a t  a knowledge 

The a v a i l a b i l i t y  of densi ty  and temperature p r o f i l e s  a l s o  allows a com- 

parison with a r e c e n t l y  developed s t a b i l i t y  c r i t e r i o n  of Roth (pr iva te  com- 

munication) which states t h a t  a s u f f i c i e n t  condition f o r  s t a b i l i t y  is t h a t  

t h e  product of t h e  densi ty  and temperature be a constant across a 3lasma 

diameter f o r  both the  ions and the  electrons.  

The purpose of t h i s  paper is  t o  present these p r o f i l e s  and t o  compare 

A new them with ion cyclotron heating theory and with s t a b i l i t y  c r i t e r i a .  

model of an  e l e c t r o s t a t i c  probe i n  a d.c. magnetic f i e l d  is developed and 

is  used t o  ca lcu la te  radial p r o f i l e s  o f  temperature and density. 

of t h e  ca lcu la t ions  a r e  compared with Langmuir probe theory and with micro- 

wave measurements where applicable.  

The r e s u l t s  

THEORY 

The following plasma-probe model is s e t  up t o  obtain the  desired densi ty  
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and temperature p r o f i l e s .  The plasma is  considered t o  be composed of e lec t rons  

and a s ingle  species  of ions,  and t o  be contained by a magnetic f i e l d .  

probe i s  considered t o  be of a r b i t r a r y  shape but of a s i ze  such t h a t  it i s  

The 

large compared t o  the  gyro radius  of t h e  e lec t rons  but small compared t o  the  

gyro rad ius  of t he  ions. The ions are thus considered t o  have an i so t rop ic  

Maxwellian ve loc i ty  d i s t r i b u t i o n  while the ve loc i ty  d i s t r i b u t i o n  of the  e l ec -  

t rons  is  considered t o  be one-dimensional Maxwellian and p a r a l l e l  t o  t he  d.c. 

magnetic f i e l d .  Sheath e f f e c t s  a r e  considered t o  be negl igible .  

I n  general, the  current  through a given area  i s  given by t h e  product of 

the  charge, the  charged p a r t i c l e  density,  and the  ve loc i ty ,  in tegra ted  over 

t h e  ve loc i ty  d i s t r i b u t i o n  function. If the  probe is  below plasma po ten t i a l ,  

a l l  of the ions w i l l  be col lected and the in tegra t ion  i s  performed from zero 

t o  i n f i n i t y .  The r e s u l t s  of t h i s  in tegra t ion  a r e  

where Iri is  the  random ion current ,  no i s  the  ion densi ty  (assumed equal 

t o  t h e  e l ec t ron  dens i ty  s ince the  Debye length is  t y p i c a l l y  l e s s  than  

loe4 cm) , Ai 

M is  t h e  ion mass, and the  other symbols have t h e i r  usual meanings. 

i s  the  surface a rea  of the probe, Ti i s  the  ion temperature, 

The lower l i m i t  of t h e  integrat ion i s  not zero for t h e  e l ec t ron  current  

s ince only those e lec t rons  which can overcome t h e  po ten t i a l  barrier ex i s t ing  

between the probe and t h e  plasma w i l l  be col lected.  The e l ec t ron  current  i s  

thus given by 

where 4 
the magnetic f i e l d ,  Te 

and V is  the  probe voltage measured w i t h  respect  t o  plasma poten t ia l .  . !The 

is  the a rea  of t he  projection of t h e  probe on a plane normal t o  

i s  the  electron temperature, m i s  t h e  e l ec t ron  mass, 
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. random e lec t ron  current  i s  obtained from the above expression by s e t t i n g  V 

equal t o  zero.  

The e l ec t ron  temperature may be found by considering the  probe t o  be a t  

f l o a t i n g  p o t e n t i a l  and s e t t i n g  the  electron and ion currents  equal t o  each 

other.  After some manipulation, t h i s  gives 

kTe = qVf/ln Is 

where 

Equations (3) and (4) a r e  solved t o  give the  ion temperature as 

kTi = 

( 3 )  

The dens i ty  may be found from t h e  random e lec t ron  current  (Eq. ( 2 )  w i t h  

V = 0)  and is given by 

Thus t h e  e l ec t ron  densi ty ,  e lectron temperature, and the  ion temperature 

can be found from a measurement of t he  f l o a t i n g  po ten t i a l  and t h e  two satura- 

t ion cur ren ts  . 
It might be in s t ruc t ive  t o  compare t h e  above r e s u l t s  with expressions 

f requent ly  used i n  probe ana lys i s .  Eq. ( 2 )  may be wr i t ten  as 

I, = Iree - qV/kTe 

From which 

= In Ire - I n  1, sv 
kTe 

. This expression i s  commonly used t o  obtain the  e lec t ron  temperature from 

Eq. (3)  however, can be Langmuir probe data and i s  common t o  t he  two models. 
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a much more rap id  means of analyzing t h e  experimental data.  

Eq. (6 )  gives t h e  dengity i n  terms of t h e  e l ec t ron  and ion sa tu ra t ion  

currents .  

plasma is  immersed i n  a magnetic f i e l d .  An approximate formula f o r  charged 

p a r t i c l e  dens i ty  ( a l so  from the  usual Langmuir probe theory)  i n  terms of t he  

ion sa tura t ion  current  i s  given ( R e f .  4) by 

The e l ec t ron  sa tura t ion  current i s  not normally used when t h e  

n (7) 

Here the ion sa tura t ion  current and t h e  e lec t ron  temperature a r e  used t o  

ca lcu la te  t he  number densi ty .  A comparison with Eq. (1) shows t h a t  Eq. ( 7 )  

corresponds t o  Eq. (1) with t h e  quantity 2Te used i n  place of Ti. 

The der iva t ion  of Eq. ( 7 )  assumes t h a t  Te >> Ti and t h a t  t h e  ion col-  

l e c t i o n  is  determined by the  sheath surrounding,the probe. The present ex- 

pression (Eq. ( 6 ) )  an t i c ipa t e s  plasmas where Ti may be greater  than Te. 

Comparing t h e  above with Eq. ( 4 )  gives: 

A i  1 /2  
- -  - .8 Is - [TI no 
n l P  Ae 

For a plasma cons is t ing  of atomic hydrogen ions and fo r  a cy l ind r i ca l  

Ai = n/2 A,, t h i s  ex- probe perpendicular t o  the  magnetic f i e l d  fo r  which 

pression becomes: 

- - Is - -  no 
1P  

n 19.24 

Thus the  r a t i o  of dens i t i e s  calculated from the  two equations w i l l  de- 

pend only  on t h e  r a t i o  of t he  measured sa tu ra t ion  currents .  

EXPERIMENTAL APPARATUS 

The experimental '-apparatus used w a s  a continuously operating magnetic 

mirror  machine with a 2 : l  mirror r a t i o .  A schematic of one ha l f  of t he  main 

por t ion  of t h e  vacuum chamber and of t h e  magnetic f i e l d  configuration is  
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given i n  Fig. 1. The chamber is  5 cm i n  radius  and has an aluminum oxide 

center sect ion with a 4-section S t i x  type c o i l  around it. The gas feed and 

the fi lament s t ruc ture  f o r  t h e  e lec t ron  bombardment source a re  located a t  one 

end of t h e  chamber while the  pumping system is at tached t o  the other  end. 

There was a continuous flow of hydrogen gas t h a t  maintained t h e  pressure 

within t h e  main portion of t h e  vacuum chamber a t  2 microns. The o v e r a l l  

length of the vacuum chamber i s  255 cm. The uniform region of t h e  magnetic 

f i e l d  was adjusted t o  a value of approximately 4500 gauss f o r  the series of 

measurements reported here. The ion cyclotron wave was exci ted with a two- 

wavelength S t i x  c o i l  operating a t  a radio frequency of 6 .5  Mc. 

wavelength was 40 cm. 

The c o i l  

The probe w a s  located a t  port  1 (Fig. 1) a t  t h e  end of the  apparatus 

nearest  the  filament s t ruc ture .  A schematic of t h e  cross sect ion of t h e  

vacuum chamber a t  t h e  probe locat ion and d e t a i l s  of probe construction a r e  

given i n  Fig. 2 .  The probe consisted of a small loop of 0.01 inch diameter 

tungsten wire which could be heated t o  the temperature required f o r  e lec-  

t r o n  emission by passing a d.c. current through it. 

t o  a hydraulic actuator  which w a s  used t o  move the  probe r a d i a l l y  i n t o  and 

out of t h e  plasma a t  a control led r a t e .  The probe actuator  cont ro l  system 

provided a voltage output which was proportional t o  the probe posi t ion.  

data  were taken as a function of radial probe posi t ion.  

The probe w a s  a t tached 

All 

The measurements taken consisted of the  f l o a t i n g  p o t e n t i a l  of the  cold 

probe, t h e  f l o a t i n g  p o t e n t i a l  of t h e  emissive probe, the  ion sa tura t ion  cur- 

r e n t ,  and t h e  e l e c t r o n  sa tura t ion  current.  

It has been pointed out (Ref. 5 )  that the f l o a t i n g  p o t e n t i a l  of the 

emissive probe is  very nearly the same as t h e  plasma poten t ia l .  The d i f f e r -  

ence i n  f l o a t i n g  p o t e n t i a l s  between the hot probe and cold probe thus gives 

t h e  quant i ty  Vf needed i n  t h e  equations. 
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The method of measuring the  ion and electron sa tura t ion  currents  i s  il- 

l u s t r a t e d  i n  Fig. 3 which gives a t y p i c a l  probe t r a c e  obtained a t  a f ixed  

radius .  

net current t o  the probe. The probe was biased t o  some voltage A which was 

below t h e  zero net current voltage. 

This t r a c e  has been drawn s o t h a t  zero voltage corresponds t o  zero 

The current measured a t  t h i s  point was 

taken as t h e  ion sa tura t ion  current and was believed t o  be no more than 254 

i n  e r r o r .  

The e lec t ron  sa tura t ion  current was obtained i n  a s i m i l a r  manner except 

t h a t  t h e  e lec t ron  current  w a s  measured at three  voltages above plasma poten- 

t i a l  (poin ts  B, C ,  and DS,. 

(with a s t r a i g h t  l i n e )  t o  give the  current at  plasma poten t ia l .  

These values of current were then extrapolated 
?' 

This method 

generally gives a value f o r  the  e lec t ron  sa tura t ion  current which is  believed 

t o  be as much as 154 too  high. 

Data were taken on the  plasma formed by t h e  e lec t ron  bombardment d i s -  

harge alone, and on t h e  plasma formed when both the  discharge and the  rf 

t ransmi t te r  were turned on. For t h e  l a t t e r  case, t h e  amount of rf power w a s  

f irst  measured as a function of magnetic f i e l d  and the f i e l d  a t  which maximum 

power absorption occurred w a s  determined f o r  t h e  values of discharge current  

used. Probe measurements were then taken a t  these maximum power points .  

Both types of plasma were operated a t  a steady s t a t e .  

The values of discharge current used were 10, 15, 20, and 25 amperes; 

only t y p i c a l  p r o f i l e s  (15 amperes) w i l l  be presented here. 

RESULTS AND DISCUSSION 

The e lec t ron  densi ty  as a function of radius  i s  given i n  Fig. 4. The 

e r r o r  bars indicate  the  uncertainty i n  pos i t ion  due t o  the  length of the  

probe and the estimated e r r o r s  i n  measuring sa tura t ion  currents .  The s o l i d  

curves i n  t h i s  f igure  represent prof i les  computed from Eq. ( 6 )  while t h e  

dot ted curves represent p r o f i l e s  computed from the  approximate Langmuir probe 
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I . 

r e l a t i o n  (Eq. ( 7 ) ) .  Although t h e  p r o f i l e s  from the  two methods appear qui te  

L d i f f e r e n t ,  the  average of these r a d i a l  dens i t ies  tu rns  out t o  be t h e  same. 

It thus becomes impossible t o  decide which is  t h e  correct  method from a con- 

s idera t ion  of the  average densi ty  obtained with a microwave interferometer.  

The p r o f i l e s  presented a r e  t y p i c a l  o f  t h e  four s e t s  of data  t h a t  were 

I taken. The fea tures  of these four s e t s  may be summarized as follows: 
I .  

(1) i n  general, t h e  maximum densi ty  d id  not always occur on a x i s  but was 

found a t  r a d i i  of up t o  0.75 cm when the  rf w a s  o f f ,  and a t  radii of from 

0.5 t o  1.0 cm when the rf was on. 

reported (Refs. 6 and 7); ( 2 )  the  maximum values of densi ty  ranged from 2.65 

t o  7 . 6 5 ~ 1 0 1 1  electrons per cubic cm when the  rf w a s  o f f ,  and from 2 . 1  t o  

This type of p r o f i l e  has previously been 

7.4X1011 electrons per cubic cm when the rf w a s  on; (3) the  average values 

of densi ty  &&en of an  area passing through the ax is  of the vacuum chamber) 

ranged from 1.15 t o  3 . 1 3 ~ 1 0 ~ ~  electrons per cubic cm when the  rf w a s  o f f ,  

and from 0.80 t o  2 . 0 4 ~ 1 0 1 1  e lec t rons  per cubic cm when the  rf w a s  on; and 

( 4 )  t h e  rad ius  of the plasma a t  a point corresponding t o  half  the  maximum 

dens i ty  was 2.17 t o  2.25 cm when the  rf w a s  o f f ,  and 1 . 1 2  t o  1.83 cm when 

the  rf w a s  on. 

The average dens i t ies  which were presented above a r e  compared with micro- 

wave d e n s i t i e s  i n  Table 1. The percentage difference between t h e  two methods 

of measuring the  average densi ty  was 25.0 t o  75.0% when the rf w a s  o f f ,  and 

0.8 t o  22.9% when t h e  rf was on. Thus, t h e  agreement between t h e  probe and 

t h e  microwave measurements i s  much be t te r  i n  the  presence of rf. This may 

be a t t r i b u t e d  t o  t h e  f a c t  t h a t  the  quantity Vf i s  much la rger  when the  rf 

i s  on and can thus be more accurately measured. 

The radial p r o f i l e  of the  electron temperature i s  presented i n  Fig. 5. 

When t h e  rf was o f f ,  t h e  e lec t ron  temperature was approximately 3 ev and d id  

not vary g r e a t l y  across  the  plasma radius.  This was found t o  be t r u e  f o r  a l l  
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four discharge currents .  When the rf was turned on, t h e  temperatures var ied 

from 5 t o  7 .5  ev a t  the  a x i s  and gradually increased t o  maximum values of from 

40 t o  66.5 ev a t  a radius  of approximately 3.75 cm. 

The ion temperatures (Fig. 6 )  showed a similar behavior. When the  rf 

was o f f ,  t h e  on-axis temperatures were found t o  be approximately 3 t o  5 ev 

up t o  a radius  of approximately 2 cm, and then increased t o  13 t o  1 7 0  ev. 

Maximum temperatures cannot be given for these cases s ince the  temperature 

increases occurred i n  regions of vanishing plasma densi ty  where t h e  currents  

t o  t h e  probe became too  small t o  measure. The on-axis temperatures ranged 

from 1 . 4  t o  1 6 . 2  ev when the rf was turned on and rose t o  peak values of 

980 t o  1875 ev. Three of the  cases considered a t ta ined  maximum ion tempera- 

t u r e  a t  approximately 3.5 cm; the maximum f o r  t h e  four th  case was at  2 . 2  cm. 

Figs. 5 and 6 indicate  t h a t  the  temperatures a r e  generally higher when the  

rf is on. Thus, the  addi t ion of rf tends t o  heat both components of the 

plasma. 

The ion temperatures t h a t  have been presented a r e  much higher than ex- 

pected and t h i s  r a i s e s  the question of whether or not some f a c t o r  has been 

neglected i n  s e t t i n g  up the  model. 

(1) t h e  plasma contains an ex terna l ly  generated monoenergetic e lec t ron  beam, 

and ( 2 )  t h e  plasma is  composed of two ion species which may be of d i f f e r e n t  

Two such f a c t o r s  have been ignored; 

temperatures. If these fac tors  a r e  taken i n t o  account, the  consequent cor- 

r e c t i o n  w i l l  increase t h e  calculated ion temperature. Thus, t h e  ion tem- 

pera tures  presented herein may be lower than the  t r u e  ion temperature. 

However, the  model has obvious defects when one supposes such hot 

plasmas. For example, a probe i n  a plasma with Ti = lo3 ev could be ex- 

pected t o  emit e lectrons due t o  bombardment by such ions. Also,  i n  a low 

dens i ty  region t h e  plasma sheath may no longer be a s m a l l  f r a c t i o n  of t h e  

probe diameter, i . e . ,  the  values of Ai and A, may be functions of t h e  

9 
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probe posi t ion.  Obviously, an independent c o n f i r m t i o n  of these high ion 

temperatures i s  des i rab le .  

There a r e  two other plasma propert ies  which may be computed from the  da ta  

taken. These are t h e  r a d i a l  e l e c t r i c  f i e l d  and the  net  charge densi ty .  These 

a r e  obtained by tak ing  t h e  first and second der iva t ive  of t he  plasma poten- 

t i a l  (Fig.  7 )  with respect  t o  radius  and subs t i t u t ing  i n t o  t h e  expressions 

E, = -dcp/ar 

t h i s  paper and is  presented i n  Fig.  8. The e l e c t r i c  f i e l d  is seen t o  r ise  

towards t h e  plasma boundary f o r  both cases presented. 

between t h e  two cases l i e s  i n  the region between t h e  center  of t h e  plasma 

and the w a l l .  

which are dis t inguishable  from each other by the  d i r ec t ion  of the f i e l d .  

The mechanism by which an  rf magnetic f i e l d  can give r ise t o  a s t rong dc 

e l e c t r i c  f i e l d  is not understood. 

presented here a r e  averages over the  probe length ( 0 . 4  cm); t h e  t r u e  f i e l d s  

may be much la rger .  

and p = E V2cp. Only t h e  e l e c t r i c  f i e l d  has been calculated f o r  

The major difference 

The rf can be seen t o  give r i s e  t o  regions of s t rong f i e l d s  

It should be emphasized t h a t  t he  f i e l d s  

The dens i ty  and temperature p ro f i l e s  presented may be compared w i t h  a 

proposed s t a b i l i t y  c r i t e r i o n  which s t a t e s  that  a s u f f i c i e n t  condition f o r  

both microscopic and macroscopic plasma s t a b i l i t y  i s  that t h e  quant i ty  

nkT be a constant i n  the  radial d i rec t ion  f o r  both the ions and the  e l ec -  

t rons .  The products have been formed and a re  presented i n  Fig. 9 .  The 

s t a b i l i t y  c r i t e r i o n  is  qui te  well  s a t i s f i e d  for the  c e n t r a l  region of t h e  

plasma, but not near t h e  plasma edge. T h i s  does not mean that t h e  plasma 

is  unstable  i n  t h i s  region, s ince the c r i t e r i o n  gives a s u f f i c i e n t  condition 

but  not a necessary one. 

The knowledge of peak and average dens i t i e s  allows a comparison w i t h  

t h e  r e l a t i o n  given by S t i x  that  spec i f ies  the  magnetic f i e l d  s t rength  a t  

t h e  resonant peak i n  terms of a x i a l  and radial wavelength, ion cyclotron 
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. 
frequency, t ransmi t te r  frequency, and plasma density.  

i s  taken as the  wavelength of the  dr iving c o i l ,  t h e  two extreme values of t h e  

r a d i a l  wavelength may be used t o  give a density region where t h e  waves can 

propagate. 

If t h e  a x i a l  wavelength 

The r e l a t i o n  becomes, f o r  the  two cases 

and 

I n  t h e  above equation, R 

t ransmi t te r  frequency, A, 

length,  ne the  e lec t ron  densi ty  (assumed uniform over t h e  plasma rad ius) ,  

and A i s  a constant.  These r e l a t i o n s  are p lo t ted  i n  Fig. 10 f o r  t h e  two 

p r i n c i p a l  a x i a l  dr iving wavelengths present i n  the experiment. The cross  

hatched regions represent the  par t icu lar  range of plasma densi ty  and R f o r  

which cyclotron waves of 44.5 and 89 cm axial wavelengths can be propagated. 

Values of t h e  measured peak and average dens i t ies  a r e  a l s o  p lo t ted .  

values of average dens i t ies  f a l l  along t h e  boundary of the  89 cm existence 

region while t h e  peak dens i t ies  f a l l  i n  t h e  space between existence regions. 

This suggests t h a t  power is  coupled t o  t h e  plasma v i a  the  89 cm wavelength 

component of t h e  rf c o i l ,  and t h a t  the plasma responds as if i t s  densi ty  

were uniform and equal t o  t h e  average densi ty  measured by the  microwave in-  

terferometer .  

is the  r a t i o  of ion cyclotron frequency t o  the  

i s  the  a x i a l  wavelength, h, i s  t h e  r a d i a l  wave- 

The 

CONCLUDING REMARKS 

The r e s u l t s  of t h i s  invest igat ion a r e  as follows: 

(1) Equations were obtained which permit calculat ion of e lec t ron  and 

ion temperature and plasma densi ty  from measurements of f l o a t i n g  p o t e n t i a l  

11 



and t h e  e lec t ron  and ion sa tura t ion  currents i n  a magnetically confined 

plasma. I 

( 2 )  The measurement of the  difference i n  f l o a t i n g  p o t e n t i a l s  ( r e l a t i v e  

t o  ground) of an emissive probe and a cold probe was found t o  be a convenient 

measure of the  a c t u a l  voltage drop across t h e  sheath when t h e  net current  is  

zero. 

(3) Measurements of r a d i a l  density,  temperature, and e l e c t r i c  f i e l d  

(a)  a hot-cathode low-pressure p r o f i l e s  were made f o r  two experiments: 

hydrogen discharge operated a t  several  discharge currents ,  and ( b )  the  same 

discharge operated with t h e  addi t ion  of rf power. 

( 4 )  The average dens i t ies  from integrated probe measurements were found 

t o  agree within 75% with microwave interferometer measurements. 

(5) The average values of the  density were found t o  be i n  agreement 

with t h e  theory f o r  generation and propagation of ion cyclotron waves. 

REFEmNCES 

1. Hooke, W. M. and Rothman, M. A . ,  "A Survey of Experiments on Ion Cyclotron 

Resonance i n  Plasmas," Nucl. Fusion 4, 33 (1964). 

2. S t i x ,  T. H . ,  "Generation and Thermalization of Plasma Waves," Phys. 

Fluids  1, 308 (1958). 

3. Vasi l 'ev,  M. P., Grigor'eva, L. I., Dolgopolov, V. V . ,  Smerdov, B. I . ,  

Stepanov, K. N. and Chechkin, V. V . ,  "Cyclotron Resonance i n  an 

Inhomogeneous Plasma Cylinder," Soviet Phys. -Tech. Phys. 9, 953 (1965). 

4. Glasstone, S. and Lovberg, R. H . ,  "Controlled Thermonuclear Reactions, 

an  Introduction t o  Theory and Experiment, (D. Van Nostrand Company, 

Inc . ,  Princeton, 1960). 

5. Domitz, S . ,  "Experimental Evaluation of a Direct-Current Low-Pressure 

Plasma Source," NASA Tech. Note D-1659 (Apri l  1963). 

12 



. 
6. Kolb, A. C . ,  Lupton, W. H . ,  Elton, R. C . ,  McLean, E. A , ,  Swartz, M . ,  

Young, M. P., G r i e m ,  H. R. and Hintz, E.,  "Plasma Confinement, Heating 

and Losses i n  PHAROS with an Extended Current Pulse." Second I n t e r -  

na t iona l  Conference on Plasma Physics and Controlled Nuclear Fusion 

Research, Culham, England, September 6-10, 1965. In t e rna t iona l  Atomic 

Energy Agency Paper No. CN21/98. 

7. Stodiek, W., Grove, D. J. and Kessler, J. O . ,  "Plasma Confinement i n  Low- 

Density C S t e l l a r a t o r  Discharges." 

Plasma Physics and Controlled Nuclear Fusion Research, Culham, England, 

September 6-10, 1965. In t e rna t iona l  Atomic Energy Agency Paper No. 

CN21/120. 

Second International.  Conference on 

13 



. 

10 

15 

20 

25 

~~~ 

TABLE I. - COMPARISON OF PROBE AND MICROWAVE MEASUREMENT 

1 . 1 5 ~ 1 0 ~ ~  .92x1Ol1 

1.88x1011 1 . 5 0 ~ 1 0 ~ ~  

3 . 1 3 ~ 1 0 ~ ~  1. 79x1O11 

2. 79x1O1l 2 . l l X l O l l  

OF AVERAGE ELECTRON DENSITY 

(a)  With r f  power off  

10 

15 

20 

25 

Beam current  Probe e l ec t ron  Microwave e l e c t r o n  
dens it y dens i ty  , 

.8Ox10l1 . 8 2 ~ 1 0 ~ ~  

1 . 3 0 ~ 1 0 ~ ~  1.33x1O11 

2 .04~1011  1. 66X1Ol1 

1. 94x1O1l 1.93~10~~ 

Percent 
difference8 

25.0 

25.3 

75.0 

32.2 
______. . 

2.4 

1.9 

22.9 

.8 

[Probe ne - microwave riel 
x 100 percent.  a Percent d i f fe rence  = Microwave ne 



rAlurninurn oxide center section - / I 
10 0 o//o 0 $0 cm-diam stainless steel tube 1 / I 

-- -- 

'0,  , 0 0 0 0  1 

'Jrf coil 

I w 

Figure L - Magnetic field and vacuum chamber configuration. 

Vacuum chamber 

I_- 
I 

L 
10 cm i.d.-, I 

I 

\ I / / / /  

;Side arm 
I 2.22 cm i. d. 

\ I 
I r 118" 2-Hole ceramic rod 

rn 
\ 
\ 
\ r Weld // 

I '\ Probe-' 

\ // /r0.020" Tungsten wire 
\ I. / 

I 
1.6 cm v+.f! 

I 

I 
I I I '.\ 

LO. 010'' Tungsten loop 

Figure 2. - Schematic of vacuum chamber cross section at probe location and probe details. 
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Figure 5. - Electron temperature profile. Current, 15 A 
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Figure 6. - Ion temperature profile. Current, 15 A. 
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Figure 9. - Application of stability cr i ter ia to 15 ampere 
runs. 
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